ALTERNATE TWO-WAY RADAR EQUATION

In this section the same radar equation factors are grouped differently to create different constants as is used by some authors.

In the last section, we had the basic radar equation given as equation [6] and it is repeated as equation [1] in the table above.

In section 4-4, in order to maintain the concept and use of the one-way space loss coefficient, α_{1}, we didn't cancel like terms which was done to form equation [6] there. Rather, we regrouped the factors of equation [5]. This resulted in two minus α_{1} terms and we defined the remaining term as G_{σ}, which accounted for RCS (see equation [8] \& [9]).

Some authors take a different approach, and instead develop an entirely new single factor α_{2}, which is used instead of the combination of α_{1} and G_{σ}.

If equation [1] is reduced to \log form, (and noting that $f=\mathrm{c} / \lambda$) it becomes:

$$
\begin{equation*}
10 \log \mathrm{P}_{\mathrm{r}}=10 \log \mathrm{P}_{\mathrm{t}}+10 \log \mathrm{G}_{\mathrm{t}}+10 \log \mathrm{G}_{\mathrm{r}}-20 \log \left(f \mathrm{R}^{2}\right)+10 \log \sigma+10 \log \left(\mathrm{c}^{2} /(4 \pi)^{3}\right) \tag{2}
\end{equation*}
$$

We now call the last three terms on the right minus α_{2} and use it as a single term instead of the two terms α_{1} and G_{σ}. The concept of dealing with one variable factor may be easier although we still need to know the range, frequency and radar cross section to evaluate α_{2}. Additionally, we can no longer use a nomograph like we did in computing α_{1} and visualize a two-way space loss consisting of two times the one-way space loss, since there are now 3 variables vs two.

Equation [2] reduces to: $10 \log \mathbf{P}_{\mathbf{r}}=10 \log \mathbf{P}_{\mathbf{t}}+10 \log \mathbf{G}_{\mathbf{t}}+10 \log \mathbf{G}_{\mathbf{r}}-\alpha_{\mathbf{2}} \quad$ (in dB)
Where $\alpha_{2}=20 \log \left(f_{1} \mathrm{R}^{2}\right)-10 \log \sigma+\mathrm{K}_{3} \quad$ and where f_{1} is the MHz or GHz value of frequency
and $\mathrm{K}_{3}=-10 \log \left(\mathrm{c}^{2} /(4 \pi)^{3}\right)+20 \log$ (conversion for Hz to MHz or GHz) $+40 \log$ (range unit conversions if not in meters) - 20log (RCS conversions for meters to feet)

The values of K_{3} are given in the table above.
Comparing equation [3] to equation [10] in Section 4-4, it can be seen that $\alpha_{2}=2 \alpha_{1}-G_{\sigma}$.

