ALTERNATE TWO-WAY RADAR EQUATION

In this section the same radar equation factors are grouped differently to create different constants as is used by some authors.

TWO-WAY RADAR EQUATION (MONOSTATIC)						
Peak power at the radar receiver input is: $P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4} = \frac{P_t G_t G_r \sigma c^2}{(4\pi)^3 f^2 R^4} * $ (<i>Note</i> : $\lambda = \frac{c}{f}$ and σ is RCS) [1]						
* Keep λ or c, σ , and R in the same units. On reducing the above equation to log form we have:						
or: $10\log P_r = 10\log P_t + 10\log G_t + 10\log G_r - \alpha_2$ (in dB)						
Where: $\alpha_2 = 20\log f_1 R^2 - 10\log \sigma + K_3$, and $K_3 = -10\log c^2/(4\pi)^3$						
Note: Losses due to antenna polarization and atmospheric absorption (Sections 3-2 and 5-1) are not included in these equations.						
K ₃ Values:						
(dB)	Range	f_1 in MHz	f_1 in GHz	f_1 in MHz	f_1 in GHz	
	Units	$\frac{1}{\sigma \text{ in } m^2}$	$\frac{1}{\sigma \text{ in } m^2}$	σ in ft ²	σ in ft ²	
	NM	114.15	174.15	124.47	184.47	
	km	103.44	163.44	113.76	173.76	
	m	-16.56	43.44	-6.24	53.76	
	yd	-18.1	41.9	-7.78	52.22	
	ft	-37.2	22.8	-26.88	33.12	

In the last section, we had the basic radar equation given as equation [6] and it is repeated as equation [1] in the table above.

In section 4-4, in order to maintain the concept and use of the one-way space loss coefficient, α_1 , we didn't cancel like terms which was done to form equation [6] there. Rather, we regrouped the factors of equation [5]. This resulted in two minus α_1 terms and we defined the remaining term as G_{σ} , which accounted for RCS (see equation [8] & [9]).

Some authors take a different approach, and instead develop an entirely new single factor α_2 , which is used instead of the combination of α_1 and G_{σ} .

If equation [1] is reduced to log form, (and noting that $f = c/\lambda$) it becomes: $10\log P_r = 10\log P_t + 10\log G_t + 10\log G_r - 20\log (f R^2) + 10\log \sigma + 10\log (c^2/(4\pi)^3)$ [2]

We now call the last three terms on the right minus α_2 and use it as a single term instead of the two terms α_1 and G_{σ} . The concept of dealing with one variable factor may be easier although we still need to know the range, frequency and radar cross section to evaluate α_2 . Additionally, we can no longer use a nomograph like we did in computing α_1 and visualize a two-way space loss consisting of two times the one-way space loss, since there are now 3 variables vs two.

Equation [2] reduces to: $10\log P_r = 10\log P_t + 10\log G_t + 10\log G_r - \alpha_2$ (in dB) [3]

Where $\alpha_2 = 20\log(f_1R^2) - 10\log\sigma + K_3$ and where f_1 is the MHz or GHz value of frequency

and $K_3 = -10\log (c^2/(4\pi)^3) + 20\log$ (conversion for Hz to MHz or GHz)+ 40log (range unit conversions if not in meters) - 20log (RCS conversions for meters to feet)

The values of K_3 are given in the table above.

Comparing equation [3] to equation [10] in Section 4-4, it can be seen that $\alpha_2 = 2\alpha_1 - G_{\sigma}$.