CONSTANTS, CONVERSIONS, and CHARACTERS

DECIMAL MULTIPLIER PREFIXES		
Prefix	Symbol	Multiplier
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

EQUIVALENCY SYMBOLS	
Symbol	Meaning
\propto	Proportional
\sim	Roughly equivalent
\approx	Approximately
\cong	Nearly equal
$=$	Equal
\equiv	Identical to, defined as
\neq	Not equal
\gg	Much greater than
$>$	Greater than
\geq	Greater than or equal to
\ll	Much less than
$<$	Less than
\leq	Less than or equal to
\vdots	Therefore
\vdots	Degrees
\prime	Minutes or feet
	Seconds or inches

UNITS OF LENGTH	
1 inch (in)	2.54 centimeters (cm)
1 foot (ft)	$=30.48 \mathrm{~cm}=0.3048 \mathrm{~m}$
1 yard (yd)	$\simeq 0.9144$ meter
1 meter (m)	39.37 inches
1 kilometer (km)	$\simeq 0.54$ nautical mile
	0.62 statute mile
	1093.6 yards
	≈ 3280.8 feet
(sm or stat. mile)	$\simeq 0.87$ nautical mile
	$\simeq 1.61$ kilometers
	= 1760 yards
	$=5280$ feet
$\begin{array}{r} 1 \text { nautical mile } \\ \text { (nm or naut. mile) } \end{array}$	$\simeq 1.15$ statute miles
	1.852 kilometers
	2025 yards
	6076 feet
1 furlong	$=1 / 8 \mathrm{mi}(220 \mathrm{yds})$

UNITS OF SPEED

$$
\begin{aligned}
1 \text { foot } / \mathrm{sec}(\mathrm{fps}) & \cong 0.59 \mathrm{knot}(\mathrm{kt})^{*} \\
& \cong 0.68 \mathrm{stat} \cdot \mathrm{mph} \\
& \cong 1.1 \mathrm{kilometers} / \mathrm{hr} \\
1000 \mathrm{fps} & \cong 600 \mathrm{knots} \\
1 \text { kilometer } / \mathrm{hr} & \cong 0.54 \mathrm{knot} \\
(\mathrm{~km} / \mathrm{hr}) & \cong 0.62 \mathrm{stat} . \mathrm{mph} \\
& \cong 0.91 \mathrm{ft} / \mathrm{sec} \\
& \\
1 \mathrm{mile} / \mathrm{hr}(\mathrm{stat} .) & \cong 0.87 \mathrm{knot} \\
(\mathrm{mph}) & \cong 1.61 \mathrm{kilometers} / \mathrm{hr} \\
& \cong 1.47 \mathrm{ft} / \mathrm{sec} \\
& \cong 1.15 \mathrm{stat} \cdot \mathrm{mph} \\
1 \mathrm{knot} * & \cong 1.69 \mathrm{feet} / \mathrm{sec} \\
& \cong 1.85 \mathrm{kilometer} / \mathrm{hr} \\
& \cong 0.515 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

*A knot is 1 nautical mile per hour.

UNITS OF VOLUME

1 gallon	$\cong 3.78$ liters
	$\cong 231$ cubic inches
	$\cong 0.1335$ cubic ft
	$\cong 4$ quarts
	$\cong 8$ pints
1 fl ounce	\cong
	29.57 cubic centimeter (cc)
	or milliliters (ml)
$1 \mathrm{in}^{3}$	$\cong 16.387 \mathrm{cc}$

UNITS OF AREA

1 sq meter $\cong 10.76 \mathrm{sq} \mathrm{ft}$
1 sq in $\cong 645$ sq millimeters (mm)
$=1,000,000 \mathrm{sq} \mathrm{mil}$
$1 \mathrm{mil}=0.001$ inch
1 acre $=43,560 \mathrm{sq} \mathrm{ft}$

$$
\begin{aligned}
& \text { UNITS OF WEIGHT } \\
& 1 \text { kilogram }(\mathrm{kg}) \cong 2.2 \text { pounds (lbs) } \\
& 1 \text { pound } \cong 0.45 \mathrm{Kg} \\
&=16 \text { ounce (oz) } \\
& 1 \mathrm{oz}=437.5 \text { grains } \\
& 1 \text { carat } \cong 200 \mathrm{mg} \\
& 1 \text { stone }(\mathrm{U} . \mathrm{K} .) \cong 6.36 \mathrm{~kg}
\end{aligned}
$$

NOTE: These are the U.S. customary (avoirdupois) equivalents, the troy or apothecary system of equivalents, which differ markedly, was used long ago by pharmacists.

UNITS OF POWER / ENERGY

$$
\begin{aligned}
& 1 \mathrm{H} . \mathrm{P} .=33,000 \mathrm{ft}-\mathrm{lbs} / \mathrm{min} \\
&=550 \mathrm{ft}-\mathrm{lbs} / \mathrm{sec} \\
& \cong 746 \mathrm{Watts} \\
& \cong 2,545 \mathrm{BTU} / \mathrm{hr} \\
&(\mathrm{BTU}=\mathrm{British} \text { Thermal Unit) } \\
& 1 \mathrm{BTU} \cong 1055 \mathrm{Joules} \\
& \cong 778 \mathrm{ft}-\mathrm{lbs} \\
& \cong 0.293 \mathrm{Watt}-\mathrm{hrs}
\end{aligned}
$$

SCALES
 OCTAVES

"N" Octaves $=$ Freq to Freq x 2^{N}
i.e. One octave would be 2 to 4 GHz Two Octaves would be 2 to 8 GHz
Three octaves would be 2 to 16 GHz

DECADES

"N" Decades $=$ Freq to Freq $\times 10^{\mathrm{N}}$
i.e. One decade would be 1 to 10 MHz

Two decades would be 1 to 100 MHz
Three decades would be 1 to 1000 MHz

TEMPERATURE CONVERSIONS

$$
\begin{gathered}
{ }^{\circ} \mathrm{F}=(9 / 5){ }^{\circ} \mathrm{C}+32 \\
{ }^{\circ} \mathrm{C}=(5 / 9)\left({ }^{\circ} \mathrm{F}-32\right) \\
{ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.16 \\
{ }^{\circ} \mathrm{F}=(9 / 5)\left({ }^{\circ} \mathrm{K}-273\right)+32 \\
{ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{K}-273.16 \\
{ }^{\circ} \mathrm{K}=(5 / 9)\left({ }^{\circ} \mathrm{F}-32\right)+273
\end{gathered}
$$

UNITS OF TIME

1 year $=365.2$ days
1 fortnight $=14$ nights (2 weeks)
1 century $=100$ years
1 millennium $=1,000$ years
NUMBERS

$$
\begin{aligned}
1 \text { decade }= & 10 \\
1 \text { Score }= & 20 \\
1 \text { Billion }= & 1 \times 10^{9} \text { (U.S.) } \\
& \text { (thousand million) } \\
= & 1 \times 10^{12} \text { (U.K.) }
\end{aligned}
$$

RULE OF THUMB FOR ESTIMATING DISTANCE TO LIGHTNING / EXPLOSION:

km - Divide 3 into the number of seconds which have elapsed between seeing the flash and hearing the noise.
miles - Multiply 0.2 times the number of seconds which have elapsed between seeing the flash and hearing the noise.
Note: Sound vibrations cause a change of density and pressure within a media, while electromagnetic waves do not. An audio tone won't travel through a vacuum but can travel at $1100 \mathrm{ft} / \mathrm{sec}$ through air. When picked up by a microphone and used to modulate an EM signal, the modulation will travel at the speed of light.

Physical Constant	Quoted Value	S*	SI unit	Symbol
Avogadro constant	6.0221367×10^{23}	36	mol^{-1}	N_{A}
Bohr magneton	$9.2740154 \times 10^{-24}$	31	$\mathrm{J} \cdot \mathrm{T}^{-1}$	$\mu_{\text {B }}$
Boltzmann constant	1.380658×10^{-23}	12	$\mathrm{J} \cdot \mathrm{K}^{-1}$	$\mathrm{k}\left(=\mathrm{R} \mathrm{N}_{\mathrm{A}}\right.$)
Electron charge	$1.60217733 \times 10^{-19}$	49	C	-e
Electron specific charge	$-1.75881962 \times 10^{11}$	53	$\mathrm{C} \cdot \mathrm{kg}^{-1}$	-e/me
Electron rest mass	$9.1093897 \times 10^{-31}$	54	kg	m_{e}
Faraday constant	9.6485309×10^{4}	29	$\mathrm{C} \cdot \mathrm{mol}^{-1}$	F
Gravity (Standard Acceleration)	$\begin{aligned} & 9.80665 \text { or } \\ & 32.174 \end{aligned}$	0	$\begin{aligned} & \mathrm{m} / \mathrm{sec}^{2} \\ & \mathrm{ft} / \mathrm{sec}^{2} \end{aligned}$	g
Josephson frequency to voltage ratio	4.8359767×10^{14}	0	$\mathrm{Hz} \cdot \mathrm{V}^{-1}$	2e/hg
Magnetic flux quantum	$2.06783461 \times 10^{-15}$	61	Wb	$\phi_{\text {o }}$
Molar gas constant	8.314510	70	$\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	R
Natural logarithm base	$\cong 2.71828$	-	dimensionless	e
Newtonian gravitational constant	6.67259×10^{-11}	85	$\mathrm{m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}$	G or K
Permeability of vacuum	$4 \pi \times 10^{-7}$	d	H/m	μ_{0}
Permittivity of vacuum	$\cong 8.8541878 \times 10^{-12}$	d	F/m	$\epsilon_{\text {o }}$
Pi	$\cong 3.141592654$		dimensionless	π
Planck constant	6.62659×10^{-34}	40	J.s	h
Planck constant/2 π	$1.05457266 \times 10^{-34}$	63	J.s	$\mathrm{h}(=\mathrm{h} 2 \pi)$
Quantum of circulation	$3.63694807 \times 10^{-4}$	33	$\mathrm{J} \cdot \mathrm{s} \cdot \mathrm{kg}{ }^{-1}$	$\mathrm{h} / 2 \mathrm{~m}_{\mathrm{e}}$
Radius of earth (Equatorial)	$\begin{aligned} & 6.378 \times 10^{6} \text { or } \\ & 3963 \end{aligned}$		m miles	
Rydberg constant	$1.0973731534 \times 10^{7}$	13	m^{-1}	R_{χ}
Speed of light	2.9979246×10^{8}	1	$\mathrm{m} \cdot \mathrm{s}^{-1}$	c
Speed of sound (dry air @ std press \& temp)	331.4	-	$\mathrm{m} \cdot \mathrm{s}^{-1}$	-
Standard volume of ideal gas	22.41410×10^{-3}	19	$\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}$	V_{m}
Stefan-Boltzmann constant	5.67051×10^{-8}	19	$\mathrm{W} \cdot \mathrm{K}^{-4} \cdot \mathrm{~m}^{-2}$	σ

* S is the one-standard-deviation uncertainty in the last units of the value, d is a defined value.
(A standard deviation is the square root of the mean of the sum of the squares of the possible deviations)

THE SPEED OF LIGHT			
ACTUAL	UNITS	RULE OF THUMB	UNITS
$\cong 2.9979246 \times 10^{8}$	$\mathrm{~m} / \mathrm{sec}$	$\approx 3 \times 10^{8}$	$\mathrm{~m} / \mathrm{sec}$
$\cong 299.79$	$\mathrm{~m} / \mathrm{\mu sec}$	≈ 300	$\mathrm{~m} / \mathrm{\mu sec}$
$\cong 3.27857 \times 10^{8}$	$\mathrm{yd} / \mathrm{sec}$	$\approx 3.28 \times 10^{8}$	$\mathrm{yd} / \mathrm{sec}$
$\cong 5.8275 \times 10^{8}$	$\mathrm{NM} / \mathrm{hr}$	$\approx 5.8 \times 10^{8}$	$\mathrm{NM} / \mathrm{hr}$
$\cong 1.61875 \times 10^{5}$	$\mathrm{NM} / \mathrm{sec}$	$\approx 1.62 \times 10^{5}$	$\mathrm{NM} / \mathrm{sec}$
$\cong 9.8357105 \times 10^{8}$	$\mathrm{ft} / \mathrm{sec}$	$\approx 1 \times 10^{9}$	$\mathrm{ft} / \mathrm{sec}$

SPEED OF LIGHT IN VARIOUS MEDIUMS

The speed of EM radiation through a substance such as cables is defined by the following formula:

$$
V=c /\left(\mu_{\mathrm{r}} \epsilon_{\mathrm{r}}\right)^{1 / 2}
$$

Where: $\quad \mu_{\mathrm{r}}=$ relative permeability $\epsilon_{\mathrm{r}}=$ relative permittivity
The real component of $\epsilon_{\mathrm{r}}=$ dielectric constant of medium.

EM propagation speed in a typical cable might be $65-90 \%$ of the speed of light in a vacuum.

APPROXIMATE SPEED OF SOUND (MACH 1)

Sea Level (CAS/TAS)		$\mathbf{3 6 , 0 0 0} \mathrm{ft}^{*}(\mathrm{TAS})$	(CAS)
$1230 \mathrm{~km} / \mathrm{hr}$	Decreases	$1062 \mathrm{~km} / \mathrm{hr}$	$630 \mathrm{~km} / \mathrm{hr}$
765 mph	Linearly	660 mph	391 mph
665 kts	To \Rightarrow	573 kts	340 kts

* The speed remains constant until $82,000 \mathrm{ft}$, when it increases linearly to $1215 \mathrm{~km} / \mathrm{hr}(755 \mathrm{mph}, 656 \mathrm{kts})$ at $154,000 \mathrm{ft}$. Also see section 8-2 for discussion of Calibrated Air Speed (CAS) and True Airspeed (TAS) and a plot of the speed of sound vs altitude.

SPEED OF SOUND	
IN VARIOUS MEDIUMS	
Substance	Speed (ft/sec)
Vacuum	Zero
Air	1,100
Fresh Water	4,700
Salt Water	4,900
Glass	14,800

DECIMAL / BINARY / HEX CONVERSION TABLE

Decimal	Binary	Hex	Decimal	Binary	Hex	Decimal	Binary	Hex
1	00001	01 h	11	01011	0 Bh	21	10101	15 h
2	00010	02 h	12	01100	0 Ch	22	10110	16 h
3	00011	03 h	13	01101	0 Dh	23	10111	17 h
4	00100	04 h	14	01110	0 Eh	24	11000	18 h
5	00101	05 h	15	01111	0 Fh	25	11001	19 h
6	00110	06 h	16	10000	10 h	26	11010	1 Ah
7	00111	07 h	17	10001	11 h	27	11011	1 Bh
8	01000	08 h	18	10010	12 h	28	11100	1 Ch
9	01001	09 h	19	10011	13 h	29	11101	1 Dh
10	01010	0 Ah	20	10100	14 h	30	11110	1 Eh

When using hex numbers it is always a good idea to use " h " as a suffix to avoid confusion with decimal numbers.
To convert a decimal number above 16 to hex, divide the number by 16 , then record the integer resultant and the remainder. Convert the remainder to hex and write this down - this will become the far right digit of the final hex number. Divide the integer you obtained by 16 , and again record the new integer result and new remainder. Convert the remainder to hex and write it just to the left of the first decoded number. Keep repeating this process until dividing results in only a remainder. This will become the left-most character in the hex number. i.e. to convert 60 (decimal) to hex we have $60 / 16=3$ with 12 remainder. 12 is C (hex) - this becomes the right most character. Then $3 / 16=0$ with 3 remainder. 3 is 3 (hex). This becomes the next (and final) character to the left in the hex number, so the answer is 3 C .

GREEK ALPHABET

Case		Greek Alphabet Name	English Equivalent	Case		Greek Alphabet Name	English Equivalent
Upper	Lower			Upper	Lower		
A	α	alpha	a	N	v	nu	n
B	β	beta	b	Ξ	ξ	xi	X
Γ	γ	gamma	g	O	0	omicron	ŏ
Δ	δ	delta	d	Π	π	pi	p
E	ϵ	epsilon	ě	P	ρ	rho	r
Z	ζ	zeta	Z	Σ	σ	sigma	S
H	η	eta	$\overline{\text { è }}$	T	τ	tau	t
Θ	θ, v	theta	th	Υ	v	upsilon	u
I	1	iota	i	Φ	ϕ, φ	phi	ph
K	к	kappa	k	X	χ	chi	ch
Λ	λ	lambda	1	Ψ	ψ	psi	ps
M	μ	mu	m	Ω	ω	omega	ō

LETTERS FROM THE GREEK ALPHABET COMMONLY USED AS SYMBOLS

Symbol	Name	Use
α	alpha	space loss, angular acceleration, or absorptance
β	beta	3 dB bandwidth or angular field of view [radians]
Γ	Gamma	reflection coefficient
γ	gamma	electric conductivity, surface tension, missile velocity vector angle, or gamma ray
Δ	Delta	small change or difference
δ	delta	delay, control forces and moments applied to missile, or phase angle
ϵ	epsilon	emissivity [dielectric constant] or permittivity [farads/meter]
η	eta	efficiency or antenna aperture efficiency
Θ	Theta	angle of lead or lag between current and voltage
θ or \cup	theta	azimuth angle, bank angle, or angular displacement
Λ	Lambda	acoustic wavelength or rate of energy loss from a thermocouple
λ	lambda	wavelength or Poisson Load Factor
μ	mu	micro 10^{-6} [micron], permeability [henrys/meter], or extinction coefficient [optical region]
ν	nu	frequency
π	pi	3.141592654+
ρ	rho	charge/mass density, resistivity [ohm-meter], VSWR, or reflectance
Σ	Sigma	algebraic sum
σ	sigma	radar cross section [RCS], Conductivity [1/ohm-meter], or Stefan-Boltzmann constant
T	Tau	VSWR reflection coefficient
τ	tau	pulse width, atmospheric transmission, or torque
Φ	Phi	magnetic/electrical flux, radiant power [optical region], or Wavelet's smooth function [low pass filter]
ϕ or φ	phi	phase angle, angle of bank, or beam divergence [optical region]
Ψ	Psi	time-dependent wave function or Wavelet's detail function [high pass filter]
ψ	psi	time-independent wave function, phase change, or flux linkage [weber]
Ω	Omega	Ohms [resistance] or solid angle [optical region]. Note: inverted symbol is conductance [mhos]
ω	omega	carrier frequency in radians per second

MORSE CODE and PHONETIC ALPHABET

A - alpha	--	J - juliett	---	S - sierra	-••	1	-----
B - bravo	- •••	K - kilo	-•-	T - tango	-	2	-•--
C - charlie	-•-•	L - lima	--••	U - uniform	-•-	3	-••--
D - delta	-••	M - mike	--	V - victor	-••-	4	-•••-
E-echo	\bullet	N - november	-	W - whiskey	--	5	-••••
F - foxtrot	-•-•	O - oscar	-- -	X - x-ray	-••	6	-••••
G - golf	-	P - papa	---•	Y - yankee	-•--	7	--•••
H - hotel	$\cdots \cdot \bullet$	Q - quebec	--•-	Z - zulu	--••	8	---••
I - india	-•	R - romeo	--•	0	-----	9	----•

Note: The International Maritime Organization agreed to officially stop Morse code use by February 1999, however use may continue by ground based amateur radio operators (The U.S. Coast Guard discontinued its use in 1995).

Basic Math / Geometry Review

EXPONENTS

$$
\begin{gathered}
a^{x} a^{y}=a^{x+y} \\
a^{x} / a^{y}=a^{x-y} \\
\left(a^{x}\right)^{y}=a^{x y} \\
a^{0}=1
\end{gathered}
$$

Example:

$$
\frac{x}{\sqrt{x}}=x \cdot x^{-\frac{1}{2}}=x^{\left(1-\frac{1}{2}\right)}=x^{\frac{1}{2}}=\sqrt{x}
$$

LOGARITHMS

$\log (x y)=\log x+\log y$
$\log (x / y)=\log x-\log y$
$\log \left(x^{N}\right)=N \log x$
If $z=\log x$ then $x=10^{z}$
Examples: $\log 1=0$
$\log 1.26=0.1 ; \quad \log 10=1$
if $10 \log \mathrm{~N}=\mathrm{dB} \#$,
then $10^{(\mathrm{dB} \# / 10)}=\mathrm{N}$

TRIGONOMETRIC FUNCTIONS

$$
\sin x=\cos \left(x-90^{\circ}\right)
$$

$$
\cos x=-\sin \left(x-90^{\circ}\right)
$$

$\tan \mathrm{x}=\sin \mathrm{x} / \cos \mathrm{x}=1 / \cot \mathrm{x}$
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$

A radian is the angular measurement of an arc which has an arc length equal to the radius of the given circle, therefore there are 2π radians in a circle. One radian $=360^{\circ} / 2 \pi=57.296 \ldots .{ }^{\circ}$

TRIANGLES

Angles: $A+B+C=180^{\circ}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
Area $=1 / 2 b h=1 / 2 a c \sin B$
$c=\sqrt{d^{2}+h^{2}}$

SPHERE

DERIVATIVES

Assume: $\mathrm{a}=$ fixed real $\# ; \mathrm{u}, \mathrm{v} \& \mathrm{w}$ are functions of x

$$
\begin{aligned}
& d(a) / d x=0 ; d(\sin u) / d x=d u(\cos u) / d x \\
& d(x) / d x=1 ; d(\cos v) / d x=-d v(\sin v) / d x
\end{aligned}
$$

$\mathrm{d}(u v w) / \mathrm{dx}=u v d w / d x+v w d u / d x+u w d v / d x+\ldots$ etc

INTEGRALS

Note: All integrals should have a constant of integration added
Assume: $\mathrm{a}=$ fixed real $\# ; \mathrm{u}, \& \mathrm{v}$ are functions of x

$$
\begin{aligned}
& \int a d x=a x \quad \text { and } \quad \int a f(x) d x=a \int f(x) d x \\
& \int(u+v) d x=\int u d x+\int v d x ; \int e^{x} d x=e^{x}
\end{aligned}
$$

$\int(\sin a x) d x=-(\cos a x) / a ; \int(\cos a x) d x=(\sin a x) / a$

