IEEE-488 INTERFACE BUS (HP-IB/GP-IB)

In the early 1970's, Hewlett-Packard came out with a standard bus (HP-IB) to help support their own laboratory measurement equipment product lines, which later was adopted by the IEEE in 1975. This is known as the IEEE Std. 488-1975. The IEEE-488 Interface Bus (HP-IB) or general purpose interface bus (GP-IB) was developed to provide a means for various instruments and devices to communicate with each other under the direction of one or more master controllers. The HP-IB was originally intended to support a wide range of instruments and devices, from the very fast to the very slow.

Description:

The HP-IB specification permits up to 15 devices to be connected together in any given setup, including the controller if it is part of the system. A device may be capable of any other three types of functions: controller, listener, or talker. A device on the bus may have only one of the three functions active at a given time. A controller directs which devices will be talkers and listeners. The bus will allow multiple controllers, but only one may be active at a given time. Each device on the bus should have a unique address in the range of 0-30. The maximum length of the bus network is limited to 20 meters total transmission path length. It is recommended that the bus be loaded with at least one instrument or device every 2 meter length of cable (4 meters is maximum). The use of GP-IB extenders may be used to exceed the maximum permitted length of 20 meters.

Electrical Interface:

The GP-IB is a bus to which many similar modules can be directly connected, as is shown in Figure 1. A total of 16 wires are shown in the figure - eight data lines and eight control lines. The bus cables actually have 24 wires, providing eight additional for shielding and grounds.

The GP-IB defines operation of a three-wire handshake that is used for all data transfers on the bus. The bus operation is asynchronous in nature. The data-transfer rate of the GP-IB is 500 kHz for standard applications and can go up 1 MHz if special conventions are followed. Each transaction carries 8 bits, the maximum data bandwidth is on the order of 4 to 8 megabits (1 M byte) per second. The bus is a two way communications channel and data flows in both directions. Figure 2 illustrates the structure of the GP-IB bus and identifies the 16 connections of the interconnecting cable.

Figure 2. GP-IB Instrumentation Bus Structure

The cabling limitations make it a less-than-ideal choice for large separation between devices. These limitations can be overcome with bus extenders. Those attempting to use bus extenders should be aware that few extenders are as transparent as claimed. This is especially true in handling of continuous data and interrupts. In nonextended environments, it provides an excellent means for high-speed computer control of multiple devices.

The following table shows the various interface functions, the mnemonics and the descriptions.

Interface Function	Mnemonic	Description		
Talker (extended talker)	T (TE)	Device must be able to transmit		
Listener (Extended listener)	L (LE)	Device must receive commands and data		
Source Handshake	SH	Device must properly transfer a multiline message		
Acceptor Handshake	AH	Device must properly receive remote multiline messages		
Remote/Local	RL	Device must be able to operate from front panel and remote information from bus		
Service Request	SR	Device can asynchronously request service from the controller		
Parallel Poll	PP	Upon controller request, device must uniquely identify itself if it requires service		
Device Clear	DC	Device can be initialized to a predetermined state		
Device Trigger	DT	A device function can be initiated by the talker on the bus		
Controller	С	Device can send addresses, universal commands, address commands, and conduct polls		
Drivers	Е	This code describes the type of electrical drivers in a device		

 Table 1. GP-IB Interface Functions

The cabling specifications of the GP-IB interface system permit interconnecting all devices together in a star or linear configuration. The GP-IB connector is a 24-pin ribbon-type connector.

In summary, Table 2 on this page and the next shows the complete description of the GP-IB data bus.

IEEE-488, GP-IB, HP-IB, or IEC-625								
Descriptor	8-bit parallel, monodirectional, multi-master (token passing) One controller, one talker, several listeners	Arbitration	Token passing: the controller addresses the next controller SRQ Service request when the controller assigns modes	Connector	24-pin Amphenol Female connector on equipment chassis. DIO1 1 ■ 13 DIO5 DIO2 2 ■ 14 DIO6 DIO3 3 ■ 15 DIO7 DIO4 4 ■ 16 DIO8 EOI 5 ■ 17 REN DAV 6 ■ 18 Gnd NRFD 7 ■ 19 Gnd NDAC 8 ■ 20 Gnd IFC 9 ■ 21 Gnd SRQ 10 ■ 22 Gnd ATN 11 ■ 23 Gnd Shld 12 ■ 24 Gnd			
Sponsor	Hewlett-Packard	Error handling	Parity bit DI07 when 7-bit ACSII characters					
Standard	IEEE 488, IEC 625	Bus length	15 m					
Address space	31 devices	Driver	Special 24 mA drivers					
Data format	8-bit parallel	Speed	1 MByte/s					
Transfer type	Write only, talker toward listener(s) or commander toward all others			Remarks	The 488 is most commonly used for data acquisition of H-P peripherals. Programmable interfaces and drivers exist and simplify the development of microprocessor interfaces.			
Timing	Handshaken 3-wire broadcast transfer: DAV data valid NDAC Not data accepted NRFD Not ready for data	References	IEEE Computer Society					

 Table 2. GP-IB Data Bus Description

HP-IL Variation:

Since introduction of the IEEE-488, technology produced a generation of medium-speed, low-power, instrumentation which had a need to operate in an automatic test system such as the GP-IB. The HP-IL (Hewlett-Packard Interface Loop), was introduced to meet this need. The HP-IL is a low-cost, low-power alternative to the GP-IB system. The HP-IL and GP-IB provide the same basic functions in interfacing controllers, instruments, and peripherals, but they differ in many other respects. HP-IL is suitable for use in low-power, portable applications (typically used for interface of battery-power systems). The GP-IB is not practical to operate from battery power. The HP-IL maximum data rate is 20K bytes per second. This is a high rate compared to the RS-232C, but much slower than GP-IB. The HP-IL can operate over distances of up to 100 meters between any two devices. Since it is a loop environment, there is no maximum system cable restriction. The basic device-addressing scheme allows for up to 30 devices on a loop.