## MATHEMATICAL NOTATION

The radar and Electronic Warfare communities generally accept some commonly used notation for the various parameters used in radar and EW calculations. For instance, "P" is almost always power and "G" is almost always gain. Textbooks and reference handbooks will usually use this common notation in formulae and equations.

A significant exception is the use of " $\alpha$ " for space loss. Most textbooks don't develop the radar equation to its most usable form as does this reference handbook, therefore the concept of " $\alpha$ " just isn't covered.

Subscripts are a different matter. Subscripts are often whatever seems to make sense in the context of the particular formula or equation. For instance, power may be " P ", " $\mathrm{P}_{\mathrm{T}}$ ", " $\mathrm{P}_{\mathrm{t}}$ ", or maybe " $\mathrm{P}_{1}$ ". In the following list, generally accepted notation is given in the left hand column with no subscripts. Subscripted notation in the indented columns is the notation used in this handbook and the notation often (but not always) used in the EW community.
$\alpha \quad=\quad$ Space loss
$\alpha_{1}=$ One way space loss, transmitter to receiver
$\alpha_{2}=$ Two way space loss, transmitter to target (including radar cross section) and back to the receiver
$\alpha_{1 \mathrm{t}}=$ One way space loss, radar transmitter to target, bistatic
$\alpha_{1 \mathrm{r}}=$ One way space loss, target to radar receiver, bistatic
Other notation such as $\alpha_{\mathrm{tm}}$ may be used to clarify specific losses, in this case the space loss between a target and missile seeker, which could also be identified as $\alpha_{1 \mathrm{r}}$.


```
    G
    G
    G
    G
    h = Height or Planks constant
    h}\mp@subsup{\textrm{radar}}{}{=}\quad\mathrm{ Height of radar
    h}\mp@subsup{h}{\mathrm{ target }}{}=\mathrm{ Height of target
J = Jamming signal (receiver input)
    \mp@subsup{J}{1}{}}==\mathrm{ Jamming signal (constant gain jammer)
    J
J/S = Jamming to signal ratio (receiver input)
k = Boltzmann constant
K
\lambda = Lambda, Wavelength or Poisson factor
L = Loss (due to transmission lines or circuit elements)
N}==\mathrm{ Receiver equivalent noise input ( }\mp@subsup{\textrm{kT}}{0}{}\textrm{B}
NF = Noise figure
P = Power
    P
    P
    P
    P
    Pr}= Power receive
    P
R = Range (straight line distance)
    R
    R2}=\mathrm{ Bistatic radar target to receiver range
    R}=\quad\mathrm{ Range of jammer to receiver (when separate from the target)
    R
\sigma = Sigma, radar cross section (RCS)
S = Signal (receiver input)
    S
    S
t = Time
    t int = Integration time
    tr}=\quad=\quad\mathrm{ Pulse Rise Time
    \tau = Pulse Width
V 
```

