## MIXERS AND FREQUENCY DISCRIMINATORS

Mixers are used to convert a signal from one frequency to another. This is done by combining the original RF signal with a local oscillator (LO) signal in a non-linear device such as a Schottky-barrier diode.

The output spectrum includes:

- The original inputs, LO and RF
- All higher order harmonics of LO and RF
- The two primary sidebands ,  $LO \pm RF (m, n = 1)$
- All higher order products of mLO  $\pm$  nRF (where m,n are integers)
- A DC output level

The desired output frequency, commonly called the intermediate frequency (IF), can be either the lower (LO-RF) or upper (LO+RF) sideband. When a mixer is used as a down converter, the lower sideband is the sideband of interest.

A microwave balanced mixer makes use of the 3 dB hybrid to divide and recombine the RF and LO inputs to two mixing diodes. The 3 dB hybrid can be either the  $90^{\circ}$  or  $180^{\circ}$  type. Each has certain advantages which will be covered later. The critical requirement is that the LO and RF signals be distributed uniformly (balanced) to each mixer diode.

Figure 1 is a typical balanced mixer block diagram. The mixer diodes are reversed relative to each other; the desired frequency (IF) components of each diode are then in-phase while the DC outputs are positive and negative respectively.

The two diode outputs are summed in a tee where the DC terms cancel and only the desired IF component exists at the IF port.

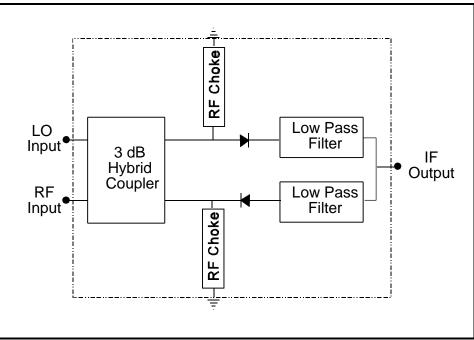



Figure 1. Mixer Block Diagram

Other types of mixers exist, including the double-balanced mixer, and the Ortho-Quad® (quadrature fed dual) mixer. The relative advantages and disadvantages of each of the four types are summarized in Table 1.

| Mixer Type          | VSWR <sup>1</sup> | Conversion<br>Loss <sup>2</sup> | LO/RF<br>Isolation <sup>3</sup> | Harmonic<br>Suppression <sup>4</sup> | Dynamic<br>Range | IF<br>Bandwidth |
|---------------------|-------------------|---------------------------------|---------------------------------|--------------------------------------|------------------|-----------------|
| 90° Hybrid          | good              | lowest                          | poor                            | poor-fair                            | high             | wide            |
| 180° Hybrid         | poor              | low                             | good                            | good                                 | high             | wide            |
| Double-<br>Balanced | poor              | low                             | Very good -<br>excellent        | very good                            | high             | extremely wide  |
| Ortho Quad          | good              | low                             | very good                       | fair                                 | high             | wide            |

**Table 1.** Mixer Comparison

## NOTES:

- (1) Poor = 2.5:1 typical; Good = 1.3:1 typical
- (2) Conversion loss: lowest: 5-7 dB typical; Low 7-9 dB typical
- (3) Poor: 10 dB typical ; Good: 20 dB typical ; Very Good: 25-30 dB typical ; Excellent: 35-40 dB typical
- Poor: partial rejection of LO/RF even harmonics
  Fair: slightly better
  Good: can reject all LO even harmonics
  Very Good: can reject all LO and RF even harmonics

Used in various circuits, mixers can act as modulators, phase detectors, and frequency discriminators.

The phase discriminators can serve as a signal processing network for systems designed to monitor bearing, polarization, and frequency of AM or FM radiated signals.

A frequency discriminator uses a phase discriminator and adds a power divider and delay line at the RF input as shown in Figure 2. The unknown RF signal "A" is divided between a reference and delay path. The differential delay (T) creates a phase difference ( $\theta$ ) between the two signals which is a linear function of frequency (f) and is given by  $\theta = 2\pi fT$ .

When the two output signals are fed to the horizontal and vertical input of an oscilloscope, the resultant display angle will be a direct function of frequency.

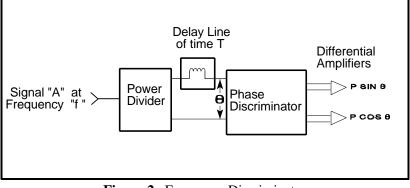



Figure 2. Frequency Discriminator