PROPAGATION TIME / RESOLUTION

1. ROUND TRIP RANGE: $R = \frac{ct}{2}$ with t = time to reach target

Rules of Thumb

In one μ sec round trip time, a	The time it takes to travel to and	
wave travels to and from an object	from an object at a distance of:	
at a distance of:		
≅ 150 m	$1 \text{ m} \approx 0.0067 \mu \text{sec}$	
≅ 164 yd	1 yd ≃ 0.006 µsec	
≅ 500 ft	1 ft $\simeq 0.002 \mu\text{sec}$	
$\simeq 0.08 \text{ NM}$	1 NM ≃ 12.35 µsec	
≅ 0.15 km	1 km ≅ 6.7 µsec	

2. ONE WAY RANGE: $\mathbf{R} = ct$ with t = time to reach target

Time	Distance Traveled	Distance	Time it Takes
1 milli sec (ms)	165 NM	1 NM	6.18 µsec
1 micro sec (µs)	1000 ft	1 km	3.3 µsec
1 nano sec (ns)	1 ft	1 ft	1 nsec

3. UNAMBIGUOUS RANGE (DISTANCE BETWEEN PULSES): $R = \frac{c \cdot PRI}{2}$

Normally a radar measures "distance" to the target by measuring time from the last transmitted pulse. If the interpulse period (T) is long enough that isn't a problem as shown in "A" to the right. When the period is shortened, the time to the last previous pulse is shorter than the actual time it took, giving a false (ambiguous) shorter range (figure "B").

 $\begin{array}{l} Rules \ of \ Thumb\\ R_{NM} \cong \ 81P_{ms}\\ R_{Km} \cong \ 150P_{ms}\\ \end{array}$ Where P_{ms} is PRI in milliseconds

4. RANGE RESOLUTION

Rules of Thumb 500 ft per microsecond of pulse width 500 MHz IF bandwidth provides 1 ft of resolution.

5. BEST CASE PERFORMANCE:

The atmosphere limits the accuracy to 0.1 ft The natural limit for resolution is one RF cycle.

